Journal of Orgenometallic Chemistry, 185 (1980) 241--249
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

OXIDATIVE ADDITION OF ACID CHLORIDES TO CATIONIC RHODIUM(I) COMPLEXES OF CHELATING DIPHOSPHINES

M.F. McGUIGGAN, D.H. DOUGHTY and L.H. PIGNOLET *
Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455 (U.S.A.)
(Received June 8th, 1979)

Summary

The reaction of benzoyl chloride with $\left[\mathrm{Rh}(\mathrm{dppp})_{2}\right] \mathrm{Cl}$ at $190^{\circ} \mathrm{C}$ and with [$\mathrm{Kh}(\mathrm{dppp}) \mathrm{Cl}]_{1}$ or ${ }_{2}$ at $25^{\circ} \mathrm{C}$ where dppp $=1,3$-bis(diphenylphosphino) propane has been examined. In both cases the five coordinate compound $\mathrm{fihCl}_{2}(\mathrm{COPh})$ (dppp) was rapidly formed and isolated in high yield. This compound does not underge phenyl migration to $\mathrm{RhCl}_{2}(\mathrm{CO})(\mathrm{Ph})(\mathrm{dppp})$ even upon warming to $190^{\circ} \mathrm{C}$ in benzoyl chloride solution and no decarbonylation products are observed. This is in marked contrast to the reaction of $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ with benzoyl chloride where the migrated product $\mathrm{RhCl}_{2}(\mathrm{CO})(\mathrm{Ph})\left(\mathrm{PPh}_{3}\right)_{2}$ is formed with the eventual reductive elimination of chlorobenzene. The single crystal X-ray analysis of $\mathrm{RhCl}_{2}(\mathrm{COPh})(\mathrm{dppp})$ has been carried out ($R=0.036$). The compound is square pyramidal with the COPh group in the apical position. The $\mathrm{Rh}-\mathrm{C}$ bond distance of 1.992(3) \AA is short for a $\mathrm{Rh}^{\mathrm{IIL}} \mathrm{C}_{\sigma}$ bond and indicates $d_{\boldsymbol{\pi}} \rightarrow \boldsymbol{\pi}^{\star}$ back bonding.

Introduction

The catalytic homogereous decarbonylation of aldehydes using complexes of the type $\left[\mathrm{Rh}(\mathrm{dppp})_{2}\right] \mathrm{Cl}(\mathrm{I})$ or $\left[\mathrm{Rh}(\mathrm{dppp}) \mathrm{Cl}_{1_{1}}\right.$ or 2 (II) where $\mathrm{dppp}=1,3-$ bis(diphenylphosphin') propane has recently been reported [1,2]. Complex I is effective and useful for decarbonylating various aldehydes catalytically at temperatures as low as $115^{\circ} \mathrm{C}$ (Scheme 1). The only spectroscopically detectible intermediate in this reaction is Rh (dppp) $)_{2} \mathrm{CO}^{+}$(III) [3] which may be isolated from the catalytic reaction mixture $[1,2]$. Importantly, complex I or III decarbonylates aldehydes selectively with catalytic activities which exceed those obtained using $\mathrm{RhCl}\left(\mathrm{PPh}_{3}\right)_{3}$ (IV) [4-6] by more than two orders of magnitude. Complex II [7] * is also an effective aldehyde decarbonylation

[^0]SCHEME 1

catalyst but with lower activity and stability than I [2]. Complex IV is effective at decarbonylating acid chlorides, and in this case the reaction mechanism is thought to be well understood (Scheme 2) $[8,9]$. Intermediates V and VI have been isolated and characterized [8,9]. Complex V with $R=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ and

SCHEME 2

$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$ has been structured by two independent single crystal X-ray analyses with conflicting results $[8,9]$. The former compound ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) was claimed to be trigonal bipyramidal [8] while the latter ($\mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}$) appears to be square pyramidal [9]. However, neither structure is of the quality necessary for a highly accurate determination of the coordination geometry and therefore some uncertainty remains as to the structural nature of this innportant class of compounds *,

As part of our studies designed to elucidate the mechanism of the reaction

[^1]shown in Scheme 1, the decarbonylation of acid chlorides was attempted. Surprisingly, reaction of acid chlorides with I or with II under a purified \mathbf{N}_{2} atmosphere did not lead to decarbonylation products even at temperatures as high as $190^{\circ} \mathrm{C}$, in marked contrast to the rapid decarbonylation observed with IV (Scheme 2). However, a rapid oxidative addition reaction did occur between neat benzoyl chloride and I at $190^{\circ} \mathrm{C}$ under a N_{2} atmosphere yielding a yellow solution from which a solid product was precipitated in $>95 \%$ yield by the rapid addition of decane. The compound is formulated as $\mathrm{RhCl}_{2}(\mathrm{COPh})(\mathrm{dppp})$ by elemental analysis (found: $\mathrm{C}, \mathbf{5 9 . 3 1 ; ~} \mathrm{H}, 4.71 . \mathrm{Rh}_{1} \mathrm{Cl}_{2} \mathrm{P}_{2} \mathrm{C}_{34} \mathrm{H}_{31} \mathrm{O}$ calcd.: C , $59.20 ; \mathrm{H}, 4.50 \%$) and by IR spectroscopy, KBr disk ($\nu(\mathrm{CO}) 1641 \mathrm{~cm}^{-1}$). The same compound can be synthesized in high yield by reaction of benzoyl chloride with II in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $25^{\circ} \mathrm{C}$. This method of synthesis is essentially the same as reported by Baird for RhCl_{2} (COMe)(dppp) [10].

Experimental

Crystals suitable for single crystal X-ray analysis were obtained by slow evaporation from $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ heptane solution. Crystals of $\mathrm{RhCl}_{2}(\mathrm{COPh})(\mathrm{dppp})$ belonged to the triclinic crystal class with a 9.264(5), b 10.882(3), c 15.907(5) \mathbb{A}, α $97.41(4), \beta 104.95(3)$ and $\gamma 94.66(4)^{\circ}$ as determined from a least-squares refinement of the angular settings of 25 reflections centered accurately on an EnrafNonius CAD4 diffractometer. Successful solution and refinement was achieved using the centric space group $P \overline{1}\left(V 1524 \AA^{3}, Z=2\right)$. A total of 5355 unique reflections were measured in the scan range $2 e=0-50^{\circ}$ on an Enraf-Nonius CAD4 automatic diffractometer using graphite monochromatized Mo-K K_{α} radiation (Mo- $K_{\alpha}, \lambda 0.71069 \AA$) and employing a variable rate $\omega-2 \theta$ scan technique. No decay was noted in the intensities of three standard reflections recorded at intervals of 200 sequential reflections. After correction for Lorentz, polarization, absorption ($\mu 8.5 \mathrm{~cm}^{-1}$), and background effects, 4385 (82%) were judged observed ($F_{0}^{2} \geqslant 3 \sigma\left(F_{0}^{2}\right)$) and were used in all subsequent calculations $*$.

[^2]where Lp = Lorentz and polarization factors. The $\sigma(I)$'s were converted to the estimated errors in the relative structure factors $\sigma\left(F_{0}\right)$ by
$\sigma\left(F_{0}\right)=1 / 2 \frac{\sigma(I)}{I} F_{0}$
All calculations were carried out on a PDP $11 / 34$ computer using the Enraf-Nonius SDP programs. This crystallographic computing package is described in the following reference. B.A. Frenz, "The Enraf-Nonius CAD4 SDP-A Real Time System for Concurrent X-Ray Data Collection and Crystal Structure Determination", in Computing in Crystallography, II. Schenk, R. Olthof-Hazekamp. H. van Koningsveld, and G.C. Bassi, Eds., Delft University Press, Delft, Holland, 1978, pp. 64-71.

PDSITIONAL AND THERMAL PARAIETERS AND THEIR ESTIMATED STANDARD DEVIATIONS.
$8(2,3)$

$\begin{array}{lll}0.0000(16) & 0.0235(9) & 0.0099(7) \\ 0.0194(15) & 0.0221(9) & 0.0136(6)\end{array}$

 -0.0000(9) $0.0027(7) \quad 0.000{ }^{\circ}(5)$

		(4)	0.0	$0.0131(6)$	
	0.				
	0.	$0.8650(3)$			
	0.	0.0	0.		
7	0.1640 (6)	0.0	0.	0.0	
	0.0	-8.8	0.02	0.	
0.	-0.0	-0	0.	0.	
	-	-0.00	0.0:74(8)	0.0	
	0	0.0695 (3)	$0.0169(8)$	$0.8096(5)$	
5	-0.0	0.2877 (3)	$0.0114(5)$	$0.0052(3$	
6	-0.07	$0.2294(3)$	0.0158 (0.0662	
8	-9.1989	1880 (4	0.0082 (
	-0.292	0.	0.0282	0.085	
	-0.2665	0	0.0246	0.006	
	-0.1453	0. 305	0.01376	0.807	
4)	0.1244	0.	0.00776	$0.0084(4)$	
	0.0293	0.	0.01006	$0.0107(4)$	
6)	0.0411	0.	0.01226	0.	
0.2638 (6)	0.1442 (5	0.6270 (3)	0.0148 C	0.8160(6)	0.003
0.3422 (6)	0.2400 (5)	$0.6005(3)$	$0.0154(7)$	$0.0130(5)$	
0.3488(5)	$0.2308(4)$	0.5119(3)	$0.0132(6)$	0.0097 (

E
 THE FIRM OF THE ANISOTROPIC THERMAL PARAMETER IS:

A three-dimensional Patterson function revealed the position of the rhodium atom. Fourier and difference Fourier analysis revealed the positions of all remaining nonhydrogen atoms. Full matrix least-squares refinement with all 40 nonhydrogen atoms refined anisotropically (361 variables, 4385 observations) converged to final R and R_{ω} values of 0.036 and 0.054 , respectively *. The error in an observation of unit weight was 1.71 using a value of 0.05 for p in the $\sigma(I)$ equation *. In the final difference Fourier, the highest peak was 0.63 electrons \AA^{-3} and corresponded to a H atom position. The final values of the positional and thermal parameters are given in Table $1 * *$. Scattering factor tables and anomalous dispersion terms (included for all refined atoms) were obtained from the "International Tables for X-Ray Crystallography", Birmingham, 1974, Tables 2.2B and 2.3.1, respectively. Hydrogen atoms were not located nor included in the structure factors.

Discussion

The crystal structure consists of discrete molecules of $\mathrm{RhCl}_{2}(\mathrm{COPh})(\mathrm{dppp})$. The coordination geometry about rhodium is square pyramidal with the benzoyl group occupying the apical position. A view of the coordination geometry is presented in Fig. 1 along with the important intramolecular distances and angles. The numbering scheme used on the dppp phenyl groups (not shown in Fig. 1) is $C(11)-C(16)$ and $C(17)-C(22)$ connected via $C(11)$ and $C(17)$ to $P(1)$, and $C(23)-C(28)$ and $C(29)-C(34)$ connected via $C(23)$ and $C(29)$ to $\mathbf{P (2)}$. An ORTEP stereoview of the entire molecule is shown in Fig. 2. The square pyramidal geometry is confirmed by an examination of the cis-ligand-Rhligand angles which average 93°, with maximum and minimum values of 105 and 86°. The $\mathrm{P}(2), \mathrm{P}(2), \mathrm{Cl}(1), \mathrm{Cl}(2)$ atoms are within $\pm 0.06 \AA$ of their weighted least-scuuares plane while the Rh atom is displaced $0.26 \AA$ from this plane towards the benzoyl group. The coordination geometry is similar to that of $\left[\mathrm{RhI}(\mathrm{COEt})\left(\mathrm{PPh}_{3}\right)(\mathrm{mnt})\right]^{-}$where mnt = maleonitriledithiolate [11]. The Rh-C distance of $1.992(3) \mathcal{A}$ is slightly shorter than other $R h-C_{\sigma}$ bonds [11-13] except those of the $\mathrm{Rn}-\mathrm{C}_{\text {carbene }}$ type $[14,15]$. $\mathrm{Rh}-\mathrm{C}_{\text {carbene }}$ distances range from $1.930(6)$ [14] to $1.968(13) \AA$ [15] while previously reported rhodium(III)COR distances range from 2.001 (7) [16] to $2.06(2) \AA$ [17]. The shortness of

[^3]The error in an observation of unit weight is
$\left[\Sigma w\left(F_{0}|-| F_{e}\right)^{2} /(N O-N V]^{1 / 2}\right.$
where NO and NV are the number of observations and variables, respectively.
** A table of structure factors and weighted least-squares planes has been ceposited as NAPS Document No. 03517(21 pages). Order from ASIS/NAPS, c/o Microfiche Publications, P.O. Box 3513, Grand Central Station, New York, N.Y. 10017. A.copy may be secured by citing the document number, remitting $\mathbf{\$} \mathbf{5 . 2 5}$ for photocopies or $\mathbf{\$} \mathbf{3 . 0 0}$ for microfiche. Advance payment is required. Make checks payable to Microfiche Publications. Outside the U.S. and Canada add postage of $\$ \mathbf{3 . 0 0}$ for photocopy and $\$ \mathbf{1 . 0 0}$ for microfiche.

Fig. 1. ORTEP drawing of the coordination core of RhCl_{2} (COPh)dppp with selected bond distances in A and their estimated standard deviations in parentheses. Angles in the coordination core are: $\mathbf{P (1) - R} \mathbf{R}-\mathbf{P}(2)$, 94.23(3) ${ }^{\circ}: \operatorname{P(1)-Rh-CI(1),~87.72(3);~} \mathrm{P}(2)-\mathrm{Rh}-\mathrm{Cl}(2), 85.61(3) ; \mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{Cl}(2), 89.60(3) ; \mathrm{Cl}(1)-\mathrm{Rh}-\mathrm{P}(2)$, $163.52(3) ; C l(2)-R h-P(1), 169.78(3) ; C(1)-R h-P(1), 89.15(10) ; C(1)-R h-P(2), 91.26(9) ; C(1)-R h-C l(1)$, 105.14(9); C(1)-Rh-Cl(2), 101.07(10).
the $\mathrm{Rh}-\mathrm{C}$ bond indicates that metal to ligand ($d_{\pi} \rightarrow \pi^{\star}$) back bonding is probably important $[13,16]$. The distances and angles within the dppp and benzoyl ligands are normal.

The difference in chemical reactivity between $\mathrm{RhCl}_{2}(\mathrm{COPh})\left(\mathrm{PPh}_{3}\right)_{2}$ (V) and $\mathrm{RhCl}_{2}(\mathrm{COPh})$ (dppp) is quite remarkable. The former compound, which apparently has a square pyramidal geometry with COPh apical and trans- PPh_{3} groups, undergoes phenyl migration to $\mathrm{RhCl}_{2}(\mathrm{CO})\left(\mathrm{Ph}_{\mathbf{~}}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ (VI) at room

Fig. 2. ORTEP stereoview of $\mathbf{R h C l}_{2}(\mathbf{C O R h})$ dppp.
temperature in 1,2-dichloroethane with eventual production of chlorobenzene [18] whereas $\mathrm{RhCl}_{2}(\mathrm{CO})(\mathrm{Ph})(\mathrm{dppp})$ is not observed nor is chlorobenzene produced from $\mathrm{RhCl}_{2}(\mathrm{COPh})(\mathrm{dppp})$ even after heating to $190^{\circ} \mathrm{C}$ in benzoyl chloride solution. Baird at al. [10] have also noted the inability of RhCl_{2} (COMe)(dppp) to undergo Me group migration in refluxing CDCl_{3} solution. An explanation for this reactivity difference could be the shortness of the $\mathrm{Rh}-\mathrm{C}$ bond in $\mathrm{RhCl}_{2}(\mathrm{COPh}) \mathrm{dppp}$ which indicates that $\mathrm{Rh}-\mathrm{COPh}$ bonding is quite stable. Additionally, the short Rh-C distance would cause a trans effect [14] which may prevent isomerization of a chloride or phosphine ligand to this trans site. Such an isomerization is presumably necessary prior to phenyl migration to an open cis coordination site. An accurate structural determination of V is necessary in order to test this possibility. Alternatively, the presence of the chelating diphosphine ligand may limit certain isomerisation pathways which are necessary for migration, or perhaps the resulting octahedral complex, $\mathrm{RhCl}_{2}(\mathrm{CO})$ (Ph)(dppp), in which the phenyl group is trans to a phosphorus, is not stable relative to $\mathrm{RhCl}_{2}(\mathrm{COPh})(\mathrm{dppp})$ [10]. Additional experiments are reeded in order to decide between these alternatives.

It is important that benzaldehyde is catalytically decarbonylated to benzene by II at $115^{\circ} \mathrm{C}$ [2], whereas no chlorobenzene is produced from benzoyl chloride in the presence of this catalyst even at $190^{\circ} \mathrm{C}$ (vide supra). The difference in reactivity between benzaldehyde and benzoyl chloride is not due to the inability of the latter to undergo oxidative addition (vide supra) but must be due to a greatly increased migrating ability of the phenyl group in $\mathrm{Rh}(\mathrm{H})(\mathrm{Cl})$ (COPh)(dppp) compared with $\mathrm{RhCl}_{2}(\mathrm{COPh})(\mathrm{dppp})$. Perhaps the presence of the hydride (a strong trans effect ligand) induces fission of the trans-Rh-P bond which would provide an open cis site for migration. The unusual stability of $\mathrm{RhCl}_{2}(\mathrm{COPh})(\mathrm{dppp})$ is further demonstrated by the observation that the addition of a small amount of benzoyl chloride to a benzaldehyde solution of II at $145^{\circ} \mathrm{C}$ immediately stops the catalytic production of benzene.

It is also noteworthy that in the formation of RhCl_{2} (COPh (dppp) from $\left[\mathrm{Rh}(\mathrm{dppp})_{2}\right] \mathrm{Cl}$ and PhCOCl , a dppp ligand has been lost. During catalytic decarbonylation of aldehydes using [$\left.\mathrm{RL}(\mathrm{dppp})_{2}\right] \mathrm{Cl}$ there is no evidence for dppp loss. Indeed, the catalyst may be quantitatively recovered even after 100000 turnovers at $150^{\circ} \mathrm{C}$ and there are no spectroscopically observable intermediates save for $\operatorname{Rin}(d p p p)_{2} \mathrm{CO}^{+}$(vide supra) [1,2]. Although it is probable and resonable that Rh - P bond rupture occurs ir: Scheme 1 giving intermediates with monodentate dppp [2], it is unlikely that compleve dppp dissociation is important. Additionally, the catalytic activity (turnovers/hour) for aldehyde decarbonylation using (II) is a factor of 10 smaller than with I [2]. Experiments in progress are directed at determining the mechanisms of these reactions.

Acknowledgement
Support of this research through a grant from the National Science Foundation is gratefully acknowledged. We also thank the N.S.F. for partial support of our X-ray diffraction and structure solving equipment (NSF No. CHE7728505). Matthey Bishop Co. is gratefully acknowledged for a generous loan of RuCl_{3}.

References

I D.H. Doughty and L.H. Pignolet, J. Amer. Chem. Soc., 100 (1978) 7083.
2 D.H. Doughty, M.F. McGuiggan, H. Wang and E.H. Pignolet, Proc. Ist Intern. Symp. Homogeneous Catalysis, Plenum Press, New York, 1979, in press.
3 A.R. Sanger, J. Chem. Soc., Dalton Trans., (1977) 120.
4 M.C. Baird, C.J. Byman and G.J. Wilkinson, J. Chem. Soc. A, (1968) 348.
5 K. Ohno and J. Tsuii, it. Amer. Chem. Soc., 90 (1968) 99.
6 H.M. Walborsky and L.E. Allen, J. Amer, Chem. Soc., 93 (1971) 5465.
7 D.A. Slack and M.C. Baird, J. Organometal. Chem., 142 (1977) C69.
8 K.S.Y. Lau, Y. Becker, F. Huang. N. Baenziger and J.K. Stille, J. Amer. Chem. Soc., 99 (1977) 5664.
9 D.L. Egglestone, M.C. Baird, C.J.L. Lock and G. Turner, J. Chem. Soc., Dalton Trans., (1977) 1576.
10 D.A. Slack, D.L. Egglestone and M.C. Baird, J. Organometal. Chem., 146 (1978) 61.
11 C. Cheng. B.D; Spivack and R. Eisenberg, J. Amer. Chem. Soc., 99 (1977) 3003.
12 J.P. Collman, P.A. Christian, S. Current, P. Denisevich, T.R. Halbert, E.R. Schmittou and K.O. Hodgson, Inorg. Chem., 15 (1976) 223.
13 P.D. Frisch and G.P. Khare, Inorg. Chem., 18 (1979) 781.
$\overline{5} 4$ M. Cowie and J.A. Ibers, Inorg. Chem., 15 (1976) 552.
15 P.B. Hitchcock, M.F. Lappert, G.M. McLaughlin and A.J. Oliver, J. Chem. Soc., Dalton Trans., (1974) 68.

16 C. Cheng, D.E. Hendricksen and R. Eisenberg. J. Organometal. Chem., 142 (1977) C65.
17 G.W. Adamson, J.J. Daly and D. Forster, J. Organometal. Chem., 71 (1974) C17.
18 J.K. Stille and M.T. Regan, J. Amer. Chem. Soc., 96 (1974) 1508.

[^0]: * The nature of II in solution is best described as a monomex-dimex equilibrium: $\{\mathbf{R h}(\mathbf{d p p p}) \mathbf{C l}] \rightleftharpoons$ $\left[R h(d p p p) C l_{1}^{2}\right.$.

[^1]: * X-ray structural results on these two compounds were only reported at a preliminary stage of refinement (R values of 0.20 and 0.18 for the $\mathrm{COCH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}[8]$ and $\mathrm{COCH}_{2} \mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{5}[9]$ analogues, respectively) and no further details have been published to date.

[^2]: * The intensity data were crocessed as described in the "CAD4 and SDP Users Manual", Enraf-Nonius, Delft. Holland, 1978. The net intensity I is given as
 $I=\frac{K}{N P I}(C-T B)$
 where $K=20.1166$ (attenuator factor), NPI = ratio of fastest possible scan rate to scan rate for the measurement, $C=$ total count, $B=$ total background count and $T=$ the ratio of total count time to background count time and is 2 . The standard deviation in the net intensity is given by
 $\sigma^{2}(I)=\left(\frac{K}{N P I}\right)^{2}\left[C+4 B+(p I)^{2}\right]$
 where p is a factor used to downweight intense reflections. The observed structure factor amplitude F_{0} is given by
 $F_{0}=(I / E p)^{1 / 2}$

[^3]: * The function minimized was $\Sigma w\left(\left|F_{0}\right|-\left\{F_{c} \mid\right)^{2}\right.$ winere $w=1 / \sigma^{\mathbf{2}}\left(F_{0}\right)$. The unweighted and weighted residuals are defined as follows:
 $R=\left(\Sigma\left\|F_{0}|-| F_{c}\right\|\right) / \Sigma\left|F_{0}\right|$ and
 $R_{w}=\left[\left(\Sigma w\left(\left|F_{0}\right|-\left|F_{\mathrm{c}}\right|\right)\right)^{2} /\left(\Sigma w\left|F_{0}\right|^{2}\right]^{1 / 2}\right.$

